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Combined Wavelet Transform with Curve-fitting for Objective
Optimization of the Parameters in Fourier Self-deconvolution
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Fourier self-deconvolution was the most effective technique in
resolving overlapping bands, in which deconvolution function
results in deconvolution and apodization smoothes the magni-
fied noise. Yet, the choice of the original half-width of each
component and breaking point for truncation is often very
subjective. In this paper, the method of combined wavelet
transform with curve fitting was described with the advantages
of an enhancement of signal to noise ratio as well as the im-
proved fitting condition, and was applied to objective opti-
mization of the original half-widths of components in unre-
solved bands for Fourier self-deconvolution. Again, a noise
was separated from a noisy signal by wavelet transform,
therefore, the breaking point of apodization function can be
determined directly in frequency domain. Accordingly, some
artifacts in Fourier self-deconvolution were minimized signifi-
cantly.
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Introduction

Fourier self-deconvolution (FSD) was originally de-
veloped by Kauppinen et al . and most commonly used
in resolving overlapping spectroscopy. The main purpose
of FSD for resolving overlapping bands is to reduce the
full width at half height (w;,) to the point that each
component can be recovered or resolved from the multi-
plets whereas the peak position and peak area remain
constant before and after deconvolution. Nevertheless,
the main disadvantage of FSD is that the choice of the
original w1, of each component and breaking point for
truncation is often very subjective and, if incorrect, can
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lead to generation of artifacts in the spectrum after FSD.
To obtain objective and quantitative information, these
parameters need to be optimized to give a maximum
achievable resolution enhancement without an introduc-
tion of negative side lobes or excessive noises, both of
which will mask real weak spectral features. One method
for doing this was previously suggested by Yang and
Griffiths.*> Rahmelow et al.® described an objective
method to obtain the starting parameters and breaking
point for truncation. Laszlo’ provided a straightforward
method to determine the appropriate parameters.

Curve fitting®!!

program is a very useful optimiza-
tion technique and has been employed to many kinds of
optimization due to its good precision. Yet, it usually
yields accurate parameters for unresolved spectra only
when the number of unresolved bands and peak positions
of each band in the multiplet can be estimated with much
improved accuracy. Accordingly, many kinds of methods
have been applied to improve the fitting conditions . >
In this work, wavelet transform-based curve fitting was
proposed. Here wavelet transform was used prior to
curve fitting in order to enhance the signal to noise ratio
(SNR) as well as to improve the fitting conditions by
supplying two essential factors of peak number and peak
position, then curve fitting was applied to optimize the
parameters used in FSD. In addition, wavelet transform
was used to decompose the signals into higher frequency
(noises) and lower frequency components ( denoised sig-
nals) according to its frequency distribution. Then, the
breaking point ( L) in apodization function can be deter-
mined accordingly in frequency domain. As a conse-
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quence, some artifacts in FSD were minimized because
of an objective estimation of parameters in FSD.,

Theory
Fourier self-deconwolution

Any experimental signal, f(¢), can be expressed
as a convolution of a lineshape function, g(t), with a

higher-resolution signal, f'(¢), that is

=g > ()= -0 f (D (1)

where * indicates convolution operation. Provided that
the Fourier transform of f(¢), g(t) and f(t) exist, a
solution of Eq. (1) may be obtained in the form

ry =g {Hlel D] (2)

here {~!{ | is the inverse Fourier transform. F (w),
D(w) and G(w) are frequency features of f(¢) func-
tion, apodization function d(t) and lineshape function
g(t), respectively. There are a large number of possi-
ble apodization functions, triangular, triangular
squared, bessel, cos, sin’ etc. The only major con-
straint is that there is a very small value for |¢| > L,
that is

d(t), ltl <L

d(t’L)=§_ld(w)={ 0, ltl>L

(3)

From Eq. (2), it is apparent that the deconvoluted
signal is determined mainly by lineshape function and
apodization function. Lineshépe function results in de-
convolution but yields magnified noises whereas apodiza-
tion function smoothes the magnified noises but at the
cost of resolution enhancement. Clearly, the choice of a
proper w,, of lineshape function and a proper breaking
point for trunction is essential to achieve higher resolu-
tion enhancement as well as lower noise level. However,
the choice of these parameters is still subjective.

Combined wavelet transform with curve fitting

Wavelet transform is becoming an increasingly im-

portant tool in image and signal processing. It is effec-
tive in extraction of both time- and frequency-like infor-
mation from a time-varying signal. Therefore, it has
been used to resolving overlapping bands®? and peak
finding . %

If an analytical signal is assumed to be a time order
signal, its discrete form at the j-th scale is given by”’

Aof(n) = Sh(k) * Ay if(n=2k) (@)

Dof(n) = Sg(k) * dgy_f(n=28)  (5)

where Ayf(n) and Dyf(n) are called the discrete ap-
proximation and the discrete detail, respectively. h(k)
and g(k) are discrete low-pass filter and high-pass fil-
ter respectively corresponding to a pair of sequence { ;|
and {gt.

Noise is a phenomenon that affects all frequencies,
whereas the signal of interest is most likely to occupy a
small part of the frequency domain. Because the signal
will tend to dominate the low-frequency components, it
is expected that the majority of high-frequency compo-
nents above a certain level is due to noises. This is the
underlying philosophy for traditional Fourier filtering
where low-pass filters cut off the high-frequency compo-
nents. Similarly, small wavelet coefficients at short
scales can be expected to be mainly noisy components.
Thus to some details such as D; and D,, they mainly
consist of noises whereas to a certain detail such as D;
or Dy, it can represent the main information of the sig-
nal. Therefore, the peak number as well as peak posi-
tion of individual components in unresolved bands can be
obtained from some of these details, and this is deter-
mined by the frequency distribution of both useful infor-
mation and noise.? To a certain discrete approximation
A, its noise level is much lower than the original signal
due to that a majority of noise is deducted from the origi-
nal signal. Then, a noisy signal can be represented as:

fmisy(t) =fdenoised(t) + n(t) = Aj(t) +j§n:ldi(t) (6)

where, A'(t) and Zn; & (t) at a short scale can approxi-
i=

mately represent denoised signal f%™*(;) and noises
n(t), respectively.
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The frequency spectra of denoised signal can be ob-
tained by performing Fourier transform on the denoised
signal A/(t)

#(w)= [ H(Dep(-io)de=¢lA(D} (D)

Similarly, the frequency spectra of noise _anld" (t) can
j=
be obtained as follows:

Di(w) = | d (e - iw)de =gl Zd ()} (8)

The frequency spectra of denoised signal and noise are
divided by lineshape function in frequency domain to re-
sult in deconvolution. Thus, the deconvoluted denoised
signal and deconvoluted noise signal can be obtained as
follows

Ai(e) =A@ piy Rl g

With the increase of the frequency, A”/(w) is an expo-
nential decay function whereas D/ (w) is an increase
function. Thus, the breaking point L is determined at
the equal amplitude of A7 (w) and D7 (w).

As discussed before, the main advantages of per-
forming wavelet transform on a signal are an enhance-
ment of signal to noise ratio and the knowledge of peak
number and peak position. On basis of this, good pa-
rameters of components in unresolved bands could be
achieved by curve fitting the denoised data under the im-
proved fitting condition.

Experimental

Several various spectra were synthesized from more
Lorentzian peaks to investigate the potential advantages
Moderate
amounts of noises were added to all these synthesized

of this method for parameter estimation.

spectra. Table 1 lists parameters used to synthesize these

G(w)’ G(w) spectra.
Table 1 Parameters of synthetic bands discussed in this paper
Spectrum A Spectrum B Spectrum C Spectrum D
Parameter
11 m 1 I I 1 m v I 11 m v
Position 240 255 270 235 255 220 242 262 286 220 240 265 288
Wi 15 15 15 25 20 25 25 25 25 20 30 35 25

Area 0.6 1.2 0.6 1.0 1.2

i.,5 20 1.7 1.4 20 1.8 22 1.5

Results and discussion

Estimation of w,» of components in unresolved bands

From the theory, it is clear that sidelobes and mag-
nified noises result from improper w,, in lineshape func-
tion. If the selected lineshape is narrower than the ex-
perimental one, it may result in under-deconvolution
with lower resolution enhancement. Otherwise, it may
lead to over-deconvolution with negative sidelobes and
magnified noises. In theory, the w),, in lineshape func-
tion for deconvolution should be equal to that of the orig-
inal overlapping bands if the wy,; is equal in unresolved
bands. Otherwise, it should be the same of the narrow-
est component so as to avoid distortion from overdeconvo-
lution. Clearly, the choice of w;/, in lineshape function

means to determine the original w;, of unresolved

bands.

For clarity of presentation, this work first delt with
a simulated spectrum A (Fig. la) in the absence of
noise. First, the spectrum A was decomposed into dis-
crete approximation and discrete details with Haar
wavelet. To some details (D,, D3 or D,), it can sup-
ply the peak number and peak positions of unresolved
bands (Fig. 1b). Then, with these two parameters . the
original bands are fitted to give an estimation of w,,.
Finally, with the estimated w;,,, the deconvoluted band
was shown in Fig. lc.

To further investigate the advantages of the method
for estimation of original w,,, four various spectra were
synthesized from more Lorentzian bands. Since main ad-
vantage was expected to be a very accurate w),, estima-
tion, all spectra contained in Table 1 were discussed
firstly without an introduction of noise and relative error
(E%®) of w,,, estimation was presented in Table 2.
Clearly, E%® is less than 0.5% when a resolution (de-
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— %) where, x;, x, and w
w1+w2 ’ ’ 1» 2 1»

w, are peak positions and w, of neighboring bands, re-
spectively) of neighboring bands is higher than 0. 5.

When a resolution is below 0.4 and the number of unre-
solved peaks is less than 4, the relative error is not
higher than 2% .

0.06 0.004~b ¢
0.05 0.003 80
0.04 L0021~
3 0.002 ol
2 0.03 0.001
£ o 0.000 \J lf 40
0.01 -0.001}1- 204
0.00 ! ] ] I [ -0002 ! ! L 1 1 Ot——T—— . T 1
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Fig. 1 Procedure for the estimation of w;, (a: original spectra; b; detail D; obtained from wavelet transform;

¢: deconvoluted spectrum with estimated w1,,) .

Effects of noises on the estimation of wy,,

However, almost all realistic spectra include a cer-
tain mount of noise. So, moderate mount of noise was
introduced to all these spectra contained in Table 1 to
investigate an effect of noise on the accuracy of wy,, es-
timation. In Table 2, E %" and E %° represent the rel-
ative error of wy,, of these spectra with signal to noise
ratio SVR approximately equal to 100 and 50 respective-
ly. In comparison of E%" and E%° with E%?®, it is
apparent that the accuracy of band estimation is not seri-
ously affected by the noise level if the SNR is not less
than 100. But it decreases highly as SVR decreases if
the SNR is lower than 100 even when a resolution of
neighboring bands is not less than 0.5, This is because
noise is normally distributed, curve fitting not only
yields a statistically valid solution but it can also be
shown to yield the maximum likelihood solution. In ad-

dition, the error derived from a shift of peak position
caused by implementing wavelet transform on original
spectra is negligible too. In contrast, when the noise
levels are very high, the presence of noise may not only
lead to fitted errors but also result in a bigger shift of
peak position which yields fitted errors in turn, especial-
ly those bands with lower relative intensity. In Table 2,
E %9 represents the relative error of w,,, for an appro-
priate approximation to be fitted which was obtained from
performing wavelet transform on the spectra with the
same SNVR as what E£%° represents. It can be drawn
from the comparison of E%° and E %1 that satisfactory
estimations can be acquired if an appropriate approxima-
tion ( A%) was used to be fitted for the estimation rather
than the original spectra were used when noise level was
high. This is presumably because the approximation has
higher SNR than the original spectra.

Table 2 Estimation of w;,, of components in unresolved bands with the method

Error Spectrum A Spectrum B Spectrum C Spectrum D

(%) I I Im I i} i1} I i m 1 I I m v
E%* 0.2 -0.1 0.1 0.0 -0.1 0.0 0.0 -0.2 0.2 -0.1 0.0 0.0 -0.1 0.0
E%® 2.4 1.1 1.6 3.6 2.3 02 3.1 21 1.6 1.9 -4.0 14 0.1 0.2
E%° 5.3 2.0 3.3 8.8 2.5 0.1 6.0 44 12 40 -7.0 24 3.7 -16
E% 4.0 2.7 2.2 4.8 6.5 27 56 52 -2.4 56 49 18 0.6 9.2

Effects of resolution on the estimation of wy,

Curve-fitting program usually only yields accurate

parameters for unresolved spectra when the separation of
neighboring bands exceeds their average w,,. Thus,
the degree of separation has also influence on the accura-
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cy of w, estimation. A set of spectra with different res-
olution but equal SNR of about 120, which comprised
three Lorentzian lines with relative intensities of 6, 8
and 10, was synthesized to investigate the influence of
resolution on the accuracy of wy,, estimation. Table 3
lists relative errors caused by resolution. In the Table 3,
E%*" etc. represent the relative error when resolutions
of neighboring bands are 0.4, 0.5, 0.6, 0.7 and 0.8,
respectively. It is evident that the resolution also has
significant influence on the estimation of w;, and the
relative error increases with the increase of the degree of
overlapping.

From the above discussion it can be seen that both
noise level and the degree of overlapping affect the accu-
racy of an estimation of the w;,,. However, the relative
errors are in the range of —8.5%—+11.5% which
may not result in unacceptable pseudo-deconvolution.
This can be illustrated by using spectrum A with the o-
riginal w;,, of oy. Fig. 2 shows the comparison of de-

convoluted results when the w,,,(g) of lineshape func-
tion is 0.88, 1 and 1. 15-fold of that of original w,,,
(ao) respectively, i.e. 6=0.88q, (Fig. 2a), o=0p
(Fig. 2b), and 6 =1.150 (Fig. 2c). From the Fig.
2 it can be seen that pseudo-deconvolution could be pre-
cluded at the furthest extent in this relative error ranges.
Obviously, when this method is applied to estimate the
original w;,, of components in unresolved bands, the de-
convoluted condition could be enhanced to the point that
pseudo-deconvolution may be precluded at the furthest
extent.,

Table 3 Effect of the resolution on the accuracy of w;,, estima-
tion

wi, E%* E%® E%° E% E%°

I 30.0 2.0 10.8 9.6 8.0 5.6

Spectrum I 25.0 11.6 1.2 -0.2 1.6 0.8
m 20.0 -8.5 1.5 0.1 0.5 1.0

a b 12k €
8+
8 =

] 8t
£
a 4}
g 4}
< 4t

Ot L 1 Of 1 1 0 1 1

0 200 400 0 200 400 0 200 400

n

n

Fig. 2 Study of the effects of different w,,, in the lineshape function (a;: 6=0.880y; b: 6=0p; c: o= 1.156,).

Determination of cutoff frequency

The aim of self-deconvolution is to separate over-
lapping bands by making them narrower. Nonetheless,
experimental spectra were always contaminated by some
noises, which unfortunately exponentially increase during
the procedure of deconvolution and therefore limit the
resolution enhancement. Thus an apodization function
was needed to reduce noises and some negative side
lobes. To a certain apodization function, breaking
point, L, is a crucial parameter to determine the effec-

tiveness of smoothing. In theory, the breaking point
would be optimal to select a value for L that is as large
as possible, corresponding to the lower noise level and
smaller side lobes of the deconvoluted spectrum. Howev-
er, in practice the increase of L would lead to the de-
crease of resolution enhancement factor. As a conse-
quence, an appropriate L should be chosen to attain
higher resolution enhancement and lower noise level and
side lobes. Here, the procedure is illustrated for deter-
mining L in this work as follows:

/6{w)

fnoisy( t) =

wavelet transform l: fd en°ised( t ) =~ A‘I( L )

> A (w)

»A(w)—>L:A(w) = D' (w)
/G{w)

n(2) =~ 2D (1) D ()25 D' (w)
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To an experimental signal ™ (¢), it consists of
two portions of signal f%™*¢d( ;) and noise n(t). Yet,
the signal of interest is most likely to occupy a small part
of the frequency domain. Because the signal will tend to
dominate the low-frequency components;=it is expected
that the majority of high-frequency components above a
certain level is mainly noise. Therefore, a noisy signal
could be decomposed into two parts with wavelet trans-

form: denoised signal A/(t) and noises i}lD’ (t). Then
i

the spectra of both denoised signal and noises can be
achieved by Fourier transform and they are divided by
lineshape function in the Fourier domain array. Thus,
the amplitude of noises increases exponentially whereas
the amplitude of signal decays to a very small value as
the spatial frequency increases. In this case inclusion of
signal at higher spatial frequencies only serves to in-
crease the noise level in the spectrum without signifi-
cantly increasing the available information and it may be
further truncated without introducing side lobes into the
deconvoluted spectra. It is apparent that 16 achieve opti-
mal filtering the part need be cut where the amplitude of
noise is bigger than the signal. This procedure can be
illustrated explicitly by using outline of the FSD proce-

dure in the time domain and frequency domain with Fig.
3.

In the oscillographic chonopotentiometry, the de-
termination is based on the relationship between the con-
centration of samples and the depth of incision on the
dE/dt vs. t curve. As shown in Fig. 3a, the inci-
sion, based on the dE/dt vs. t curve of C&* and
In’* in 0.5 mol/L NH,OAc solution, can be viewed as
the result generated by two neighboring overlapped
peaks. Thus, its depth can be increased by deconvolut-
ing these overlapping peaks. By performing wavelet
transform on the noisy dE/dt vs. t curve, it would be
decomposed into two parts of the denoised signal (Fig.
3b) and noises (Fig. 3c) under a certain scale factor
(j =2). Fig. 3d shows the spectra of these two parts
divided by lineshape function in frequency domain.
From Fig. 3d it can be seen that L can be determined
very easily. Fig. 3e shows the deconvoluted spectrum
without apodization while Fig. 3f represents the decon-
voluted spectrum smoothed with Bessel function with L
obtained from Fig. 3d. It is very evident from a compar-
ison of Fig. 3e and Fig. 3f that the noise level is much
lower after apodization but at almost the same resolution
enhancement factor.

b f
1n3
(o'
N 1 N N " 1 L ] i N ] " 1 ) 1 1 i ] " ] " I i i |
0 100 200 0 100 200 0 100 200 O 4000 8000 0 100 200 O 100 200
t (ms) t (ms) t (ms) Frequency (Hz) ¢t (ms) t (ms)

Fig. 3 Outline of the procedure for determination of L (a: dE/dt vs. t curve 0ff"°isy( t), b: an approximation A%(t), c: noise n(t), d:
frequency spectra of A%(w),and N(w), e; deconvoluted spectrum without apodization, f: deconvoluted spectrum after apodiza-

ton] .
Conclusion

The objective of this paper is an exposition of the
method of combined wavelet transform with curve fitting
for an objective estimation of w;,; of components in un-
resolved bands for FSD. Also, the procedure for the de-
termination of breaking point of apodization function by
using wavelet transform to decompose a signal into a de-

noised signal (approximation) and noises was described.
From the above discussion, it is very evident that the
method should allow objective optimization of the param-
eters used in FSD. Consequently, some drawbacks could
be easily precluded. To some extent, higher resolution
enhancement factor can be achieved presumably due to
appropriate parameters for FSD and the use of denoised
spectrum for further deconvolution .
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